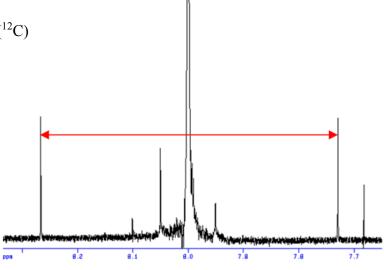

2. Homonukleare und heteronukleare J-Kopplung

Auftreten von heteronukleare Kopplung: Regeln

- a) Heterokerne = Kerne verschiedener Isotope, in der NMR generell: Andere Kerne als 1 H (und 13 C). In der Vorlesung besprochene Heterokerne: 15 N (ca. 0.5%, I=1/2), 19 F (100%, I=1/2), 29 Si (5%, I=1/2), 2 H (I=1). Regel für Multipletts M = 2nI+1!
- b) Beobachtbare indirekte Kopplung (${}^{n}J_{XY}$) zwischen Kernen X,Y unterschiedlicher Isotope: Kopplung ist **immer** vorhanden (Multiplett-Regel!), kann aber durch sog. **Entkopplung** technisch unsichtbar gemacht werden. Spektren eines Kerns X, die unter Entkopplung des Kerns Y aufgenommen werden stellt man durch die Schreibweise X{Y} dar.


¹H, ¹³C-HMBC (¹J_{CH}⁻, ²J_{CH}⁻ und ³J_{CH}-Kopplungen sichtbar, DMSO-d₆)

2. Homonukleare und heteronukleare J-Kopplung

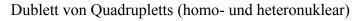
c) Kopplung zwischen ¹H und ¹³C:

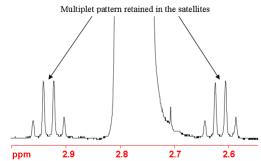
CHCl₃

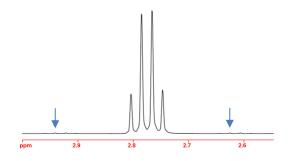
¹H: Dublett (¹³C) und Singulett (¹²C)

¹³C:

Dublett

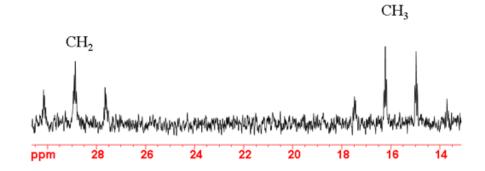

 $^{13}C\{^{1}H\}$:


Singulett


R-CH₂-CH₃

¹H:

Quadruplett (homonuklear)



2. Homonukleare und heteronukleare J-Kopplung

R-CH₂-CH₃ (Forts.)

¹³C: Triplett (heteronuklear)

 $^{13}C\{^{1}H\}$: Singuletts

d) Größe der indirekten Kopplung nimmt mit der Zahl von zwischen den Kopplungspartnern liegenden Bindungen ab (Tendenz $^1J >> ^2J > ^3J \dots$)