Referencing of NMR spectra, *Ξ* scale (06/2011)

Several possibilities exist to reference your NMR spectra: Addition of an internal standard (for ¹H and ¹³C usually TMS), use of an external standard (e.g. for ³¹P or ¹⁹F) with the aid of a capillary tube or, last but not least, by employing the so-called Ξ (Xi) scale [$\Xi_X = 100 \times (v_x / v_{TMS}^{obs})$], a procedure, which was suggested some years ago by IUPAC and which represents a very useful means of referencing, esp. if heteronuclear spectra are concerned.

In the following, we explain the principle of the Ξ scale approach using the example of an fictitious sample containing ¹H and ¹⁹F signals. Note, that the same three step approach can be transferred to any other NMR-active nucleus.

- (1) First of all, a ¹H NMR spectrum needs to be recorded. You need to calibrate the signal of TMS to 0 ppm and then determine the absolute frequency [Hz] of the TMS signal (in our example, this will be done for a 400 MHz ¹H spectrum).
- (2) The frequency value, called $\Theta(TMS)$ or V_{TMS}^{obs} , read out for the TMS signal (e.g. 400130006.82 Hz for TMS in the ¹H spectrum of our virtual sample) now needs to be multiplied with a reference frequency value, the so-called $\Xi(^{19}F)$, for the heteronucleus in question. In case of ¹⁹F, this value is 94.094011 (see table on next page). Finally, the result is divided by 100 MHz, to yield the frequency of the chemical shift of 0 ppm in ¹⁹F.

[expressed as an equation: $v_F = v_{TMS}^{obs} \frac{\Xi_F}{100}$].

(3) This value (in our example 376.4983726 MHz) can be entered in the NMR software as the value for the reference frequency (in TopSpin, it is the parameter *SF*, accessible e.g. in the edp menu). Like this, you change the ¹⁹F NMR spectrum to a corrected referencing, related to the TMS reference in the ¹H NMR spectrum.

The approach described above is the one favoured by IUPAC, it is highly recommended for use with heteronuclear spectra and easy to apply. On the next page, a table with Ξ values for selected nuclei is provided, which was taken from the original IUPAC publication first published in 2001 in Pure and Applied Chemistry (*Pure Appl. Chem.* **2001**, *73*, 1795)

	-0		2						
Is ot op ^[b]	natürliche Häu∙ figkeit x [%] ^[6]	magnetisches Moment μ [μ _n] ^[d]	gyromagnetisches Verhält- nis γ [10 ⁷ rad s ⁻¹ T ⁻¹] ^[6]	Frequenzverhältnis E [%6] ^[6]	Referenzverbindung	Probe ^{tij}	Lit. für är	relative Rez D ^r	eptivität ⁱ ll
Ţ	99.9885	4.837353570	26.7522128	100.00000 ^[6]	Me4Si	$CDCl_{3}, \varphi = 1\%$	ă	1.000	5.87×10 ³
HE	1	5.159714367	28.5349779	106.663974	[³ H ₁]Me ₄ Si	[]	loul	1	1
He	1.37×10 ⁻⁴	-3.685154336	-20.3801587	76.179437	He	Gas	E	6.06×10^{-7}	3.56×10 ⁻³
Dn	1.07	1.216613	6.728284	25.145020	Me4Si	$CDCI_3, \varphi = 1\%$	[12, 13]	1.70×10 ⁻⁴	1.00
Ng	0.368	-0.49049746	-2.71261804	10.136767	MeNO ₂	in Substanz/CDCl ₃ ^[k]	[6]	3.84×10^{-6}	2.25×10 ⁻²
19E	100	4.553333	25.18148	94.094011	CCI3F	8	[14]	0.834	4.90×10^{3}
ISez	4.67	-0.96179	-5.3190	19.867187	Me ₄ Si	$CDCI_3, \varphi = 1\%$	[15]	3.67×10 ⁻⁴	2.16
die	100	1.95999	10.8394	40.480742	H ₃ PO ₄	6	116]	6.65×10^{-2}	3.91×10^{2}
SFe	2.119	0.1569636	0.8680624	3.237778	[Fe(CO) _s]	C,D, ^{III}	[6]	7.24×10 ⁻⁷	4.25×10 ⁻³
"Se	7.63	0.92677577	5.1253857	19.071513	Me ₂ Se	in Substanz/C ₆ D ₆ ^N	[6]	5.37×10-4	3.15
Yes	100	-0.23801049	-1.3162791	4.900198	Y(NO ₃)	H ₂ O/D ₂ O ^[m]	[6]	1.19×10 ⁺	0.700
HR EOT	100	-0.1531	-0.8468	3.186447 ^[no]	[Rh(acac) ₃] ^[9]	CDCl ₃ , gesätt.	[18]	3.17×10 ⁻⁵	0.186
(¹⁰⁷ Ag)	51.839	-0.19689893	-1.0889181	4.047819	AgNO ₃	D ₂ O, gesätt.	[6]	3.50×10 ⁻⁵	0.205
BAR	48.161	-0.22636279	-1.2518634	4.653533	AgNO ₃	D ₂ O, gesätt.	[6]	4.94×10^{-5}	0.290
(h)(u)	12.80	-1.0303729	-5.6983131	21.215480	Me ₂ Cd	in Substanz ⁰¹	[61]	1.24×10^{-3}	7.27
PDCdl4	12.22	-1.0778568	-5.9609155	22.193175	Me2Cd	in Substanz ^{II}	[61]	1.35×10^{-3}	7.94
(uS ₅₁₁)	0.34	-1.5915	-8.8013	32.718749	Me ₄ Sn	in Substanz/C ₆ D ₆ ^N	[6]	1.21×10 ⁴	0.711
(uS ₂₁₁)	7.68	-1.73385	-9.58879	35.632259	Me ₄ Sn	in Substanz/C _s D ₆ ^N	[6]	3.54×10 ⁻³	20.8
uSen	8.59	-1.81394	-10.0317	37.290632	Me4Sn	in Substanz/C ₆ D ₆ ^N	[6]	4.53×10^{-3}	26.6
(¹²³ Te)	0.89	-1.276431	-7.059098	26.169742	Me ₂ Te	in Substanz/C ₆ D ₆ ^[4]	[6]	1.64×10 ⁻⁴	0.961
¹²⁵ Te	7.07	-1.5389360	-8.5108404	31.549769	Me ₂ Te	in Substanz/C ₆ D ₆ ^[4]	[6]	2.28×10^{-3}	13.4
²⁹ Xe	26.44	-1.347494	-7.452103	27.810186	XeOF ₄	in Substanz ^{II}	[20,21]	5.72×10 ⁻³	33.6
MER	14.31	0.20400919	1.1282403	4.166387	Na ₂ WO ₄	D20,1M	E	1.07×10^{-5}	6.31×10 ⁻²
SO	1.96	0.1119804	0.6192895	2.282331	0504	CCl4, 0.98 M	[22]	2.43×10^{-7}	1.43×10^{-3}
195 Pt	33.832	1.0557	5.8385	21.496784 ^[n]	[PtCl] ²⁻	D20, 1.2 M	[6]	3.51×10^{-3}	20.7
BH661	16.87	0.87621937	4.8457916	17.910822	Me2HgM	in Substanz	Ind	1.00×10^{-3}	5.89
(LT ⁶⁰²)	29.524	2.80983 305	15.5393338	57.123200 ^[s]	TI(NO ₃) ₃	[]	[24]	5.79×10 ⁻²	3.40×10 ²
LT ^{20X}	70.476	2.83747094	15.6921808	57.683838	TI(NO ₃)	6	[25]	0.142	8.36×10 ²
²⁰⁷ Pb	22.1	1.00906	5.58046	20.920599	Me₄Pb	in Substanz/C ₆ D ₆ M	[6]	2.01×10^{-3}	11.8

Tabelle 1: Die Spineigenschaften von Spin-¹-Kernen.^[a]

© N. Schlörer, 2011

I

l